References
Approaches, methods, developments, and investigations in the environment of the FLAPW method and also implementations in the Fleur code have been published in many journal articles. If your publication relies on such work please study it to learn about the details and remember to cite the respective articles. If you used FLEUR for your work please always cite the website, the (version-independent) Zenodo entry for FLEUR, and mention the used FLEUR version. It follows a list of references that may be of relevance here:
- The FLEUR project: www.flapw.de
Example Bibtex entry:
@MISC{fleurWeb,
author = {},
title = {{The FLEUR project}},
howpublished = {\url{https://www.flapw.de/}}
}
Special journal demands
Some journals may ask for a year for every reference. You can always add the date or year of your last access of the website, e.g., add a line directly below the title line like "year = 2023,".
- D. Wortmann, G. Michalicek, N. Baadji, M. Betzinger, G. Bihlmayer, J. Bröder, T. Burnus, J. Enkovaara, F. Freimuth, C. Friedrich, C.-R. Gerhorst, S. Granberg Cauchi, U. Grytsiuk, A. Hanke, J.-P. Hanke, M. Heide, S. Heinze, R. Hilgers, H. Janssen, D.A. Klüppelberg, R. Kovacik, P. Kurz, M. Lezaic, G.K.H. Madsen, Y. Mokrousov, A. Neukirchen, M. Redies, S. Rost, M. Schlipf, A. Schindlmayr, M. Winkelmann and S. Blügel, FLEUR, Zenodo, DOI: 10.5281/zenodo.7576163 (2023)
Example Bibtex entry:
@misc{fleurCode,
author = {Wortmann, Daniel and Michalicek, Gregor and Baadji, Nadjib and Betzinger, Markus and Bihlmayer, Gustav and Br\"oder, Jens and Burnus, Tobias and Enkovaara, Jussi and Freimuth, Frank and Friedrich, Christoph and Gerhorst, Christian-Roman and Granberg Cauchi, Sabastian and Grytsiuk, Uliana and Hanke, Andrea and Hanke, Jan-Philipp and Heide, Marcus and Heinze, Stefan and Hilgers, Robin and Janssen, Henning and Kl\"uppelberg, Daniel Aaaron and Kovacik, Roman and Kurz, Philipp and Lezaic, Marjana and Madsen, Georg K. H. and Mokrousov, Yuriy and Neukirchen, Alexander and Redies, Matthias and Rost, Stefan and Schlipf, Martin and Schindlmayr, Arno and Winkelmann, Miriam and Bl\"ugel, Stefan},
title = {{FLEUR}},
month = may,
year = 2023,
publisher = {Zenodo},
doi = {10.5281/zenodo.7576163},
url = {https://doi.org/10.5281/zenodo.7576163},
howpublished = {Zenodo}
}
Other citation entry formats
If you need the citation entry in a different format, please directly use the citation tools for the last version-dependent FLEUR version at Zenodo or at JuSER and adjust especially the URL and DOI manually to the version-independent entries.
- The LAPW method: O.K. Andersen, Linear methods in band theory, Phys. Rev. B 12, 3060 (1975)
- Early usage of LAPW: D. D. Koelling and G. O. Arbman, Use of energy derivative of the radial solution in an augmented plane wave method: application to copper, Phys. F: Metal Phys. 5, 2041 (1975)
- LAPW for thin films: H. Krakauer, M. Posternak, and A. J. Freeman, Linearized augmented plane-wave method for the electronic band structure of thin films, Phys. Rev. B 19, 1706 (1979)
- FLAPW (consideration of the full potential): E. Wimmer, A. J. Freeman, H. Krakauer, and M. Weinert, Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O2 molecule, Phys. Rev. B 24, 864 (1981)
- Total energy calculations in FLAPW: M. Weinert, E. Wimmer, and A. J. Freeman, Total-energy all-electron density functional method for bulk solids and surfaces, Phys. Rev. B 26, 4571 (1982)
- Comprehensive description of FLAPW: D. J. Singh and L. Nordström, Planewaves, Pseudopotentials, and the LAPW Method, Springer (2005)
- FLAPW review: S. Blügel and G. Bihlmayer, Full-Potential Linearized Augmented Planewave Method, in Computational Nanoscience: Do It Yourself! edited by J. Grotendorst, S. Blügel, and D. Marx, NIC Series Vol. 31, p. 85 (John von Neumann Institute for Computing, Jülich, 2006)
- Extending the LAPW basis with local orbitals: D. Singh, Ground-state properties of lanthanum: Treatment of extended-core states, Phys. Rev. B 43, 6388 (1991)
- Eliminating the linearization error for unoccupied states: C. Friedrich, A. Schindlmayr, S. Blügel, and T. Kotani, Elimination of the linearization error in GW calculations based on the linearized augmented-plane-wave method, Phys. Rev. B 74, 045104 (2006)
- Linearization error for valence states: G. Michalicek, M. Betzinger, C. Friedrich, and S. Blügel, Elimination of the linearization error and improved basis-set convergence within the FLAPW method, Comp. Phys. Commun. 184, 2670 (2013)
- Basic forces in FLAPW: R. Yu, D. Singh, and H. Krakauer, All-electron and pseudopotential force calculations using the linearized-augmented-plane-wave method, Phys. Rev. B 43, 6411 (1991)
- Additional force contributions: D. A. Klüppelberg, M. Betzinger, and S. Blügel, Atomic force calculations within the all-electron FLAPW method: Treatment of core states and discontinuities at the muffin-tin sphere boundary, Phys. Rev. B 91, 035105 (2015)
- Phonons with density functional perturbation theory in FLAPW: C.-R. Gerhorst, A. Neukirchen, D. A. Klüppelberg, G. Bihlmayer, M. Betzinger, G. Michalicek, D. Wortmann, and S. Blügel, Phonons from density-functional perturbation theory using the all-electron full-potential linearized augmented plane-wave method FLEUR, Electron. Struct. 6, 017001 (2024)
- FLAPW for one-dimensional systems: Y. Mokrousov, G. Bihlmayer, and S. Blügel, A full-potential linearized augmented planewave method for one-dimensional systems: gold nanowire and iron monowires in a gold tube, Phys. Rev. B. 72, 045402 (2005)
- Non-collinear magnetism in FLAPW: Ph. Kurz, F. Foerster, L. Nordström, G. Bihlmayer, and S. Blügel, Ab initio treatment of non-collinear magnets with the full-potential linearized augmented planewave method, Phys. Rev. B 69, 024415 (2004)
- Spin spirals in FLAPW: M. Heide, G. Bihlmayer, and S. Blügel, Describing Dzyaloshinskii-Moriya spirals from first principles, Physica B 404, 2678 (2009)
- Hybrid functionals in FLAPW: M. Betzinger, C. Friedrich, and S. Blügel, Hybrid functionals within the all-electron FLAPW method: implementation and applications of PBE0, Phys. Rev. B 81, 195117 (2010)
- HSE hybrid functional in FLAPW: M. Schlipf, M. Betzinger, C. Friedrich, M. Ležaić, and S. Blügel, HSE hybrid functional within the FLAPW method and its application to GdN, Phys. Rev. B 84, 125142 (2011)
- Exact exchange in FLAPW: M. Betzinger, C. Friedrich, S. Blügel, and A. Görling, Local exact exchange potentials within the all-electron FLAPW method and a comparison with pseudopotential results, Phys. Rev. B 83, 045105 (2011)
- Response functions: optimized effective potential in FLAPW: M. Betzinger, C. Friedrich, A. Görling, and S. Blügel, Precise response functions in all-electron methods: Application to the optimized-effective-potential approach, Phys. Rev. B 85, 245124 (2012)
- Response functions: COHSEX, RPA correlation energy in FLAPW: M. Betzinger, C. Friedrich, A. Görling, and S. Blügel, Precise all-electron dynamical response functions: Application to COHSEX and the RPA correlation energy, Phys. Rev. B 92, 245101 (2015)
- Wannier functions within FLAPW: F. Freimuth, Y. Mokrousov, D. Wortmann, S. Heinze, and S. Blügel, Maximally Localized Wannier Functions within the FLAPW formalism, Phys. Rev. B. 78, 035120 (2008)
- Green function formulation of the transfer matrix: D. Wortmann, H. Ishida, and S. Blügel, Ab initio Green-function formulation of the transfer matrix: Application to complex bandstructures, Phys. Rev. B 65, 165103 (2002)
- Green function embedding for transport through an interface: D. Wortmann, H. Ishida, and S. Blügel, Embedded Green-function approach to the ballistic electron transport through an interface, Phys. Rev. B 66, 075113 (2002)
- GW approximation on top of FLAPW: C. Friedrich, S. Blügel, and A. Schindlmayr, Efficient implementation of the GW approximation within the all-electron FLAPW method, Phys. Rev. B 81, 125102 (2010)
- Coulomb matrix in FLAPW: C. Friedrich, S. Blügel, and A. Schindlmayr, Efficient calculation of the Coulomb matrix and its expansion around k=0 within the FLAPW method, Comp. Phys. Comm. 180, 347 (2009)
- Spin excitations in GW: E. Şaşıoğlu, A. Schindlmayr, Ch. Friedrich, F. Freimuth, and S. Blügel, Wannier-function approach to spin excitations in solids, Phys. Rev. B 81, 054434 (2010)
- Calculating Hubbard U with cRPA: E. Şaşıoğlu, C. Friedrich, and S. Blügel, Effective Coulomb interaction in transition metals from constrained random-phase approximation, Phys. Rev. B 83, 121101(R) (2011)
- Parallelization and performance optimization: U. Alekseeva, G. Michalicek, D. Wortmann, and S. Blügel, Hybrid Parallelization and Performance Optimization of the FLEUR Code: New Possibilities for All-Electron Density Functional Theory. In: Aldinucci M., Padovani L., Torquati M. (eds) Euro-Par 2018: Parallel Processing. Euro-Par 2018. Lecture Notes in Computer Science, vol 11014. Springer, Cham.
- Parallelization of Hybrid functionals calculations with Fleur: M. Redies, G. Michalicek, J. Bouaziz, C., M. S. Müller, S. Blügel,and D. Wortmann, Fast All-Electron Hybrid Functionals and Their Application to Rare-Earth Iron Garnets, Front. Mater. 9 (2022)
- The Kerker preconditioner for charge density mixing in FLAPW: M. Winkelmann, E. Di Napoli, D. Wortmann, and S. Blügel, Kerker mixing scheme for self-consistent muffin-tin based all-electron electronic structure calculations, Phys. Rev. B 102, 195138 (2020)
- Solving the modified Helmholtz equation in FLAPW: M. Winkelmann, E. Di Napoli, D. Wortmann, and S. Blügel, Solution to the Modified Helmholtz Equation for Arbitrary Periodic Charge Densities, Front. Phys. 8, 618142 (2021)
- FLEUR as precision reference: K. Lejaeghere, G. Bihlmayer, T. Björkman, P. Blaha, S. Blügel, V. Blum, D. Caliste, I. E. Castelli, S. J. Clark, A. Dal Corso, S. de Gironcoli, T. Deutsch, J. K. Dewhurst, I. Di Marco, C. Draxl, M. Dułak, O. Eriksson, J. A. Flores-Livas, K. F. Garrity, L. Genovese, P. Giannozzi, M. Giantomassi, S. Goedecker, X. Gonze, O. Grånäs, E. K. U. Gross, A. Gulans, F. Gygi, D. R. Hamann, P. J. Hasnip, N. A. W. Holzwarth, D. Iuşan, D. B. Jochym, F. Jollet, D. Jones, G. Kresse, K. Koepernik, E. Küçükbenli, Y. O. Kvashnin, I. L. M. Locht, S. Lubeck, M. Marsman, N. Marzari, U. Nitzsche, L. Nordström, T. Ozaki, L. Paulatto, C. J. Pickard, W. Poelmans, M. I. J. Probert, K. Refson, M. Richter, G.-M. Rignanese, S. Saha, M. Scheffler, M. Schlipf, K. Schwarz, S. Sharma, F. Tavazza, P. Thunström, A. Tkatchenko, M. Torrent, D. Vanderbilt, M. J. van Setten, V. van Speybroeck, J. M. Wills, J. R. Yates, G.-X. Zhang, and S. Cottenier, Reproducibility in density functional theory calculations of solids, Science 351 (6280): aad3000 (2016)
- More comprehensive precision study with FLEUR reference data: E. Bosoni, L. Beal, M. Bercx, P. Blaha, S. Blügel, J. Bröder, M. Callsen, S. Cottenier, A. Degomme, V. Dikan, K. Eimre, E. Flage-Larsen, M. Fornari, A. Garcia, L. Genovese, M. Giantomassi, S. P. Huber, H. Janssen, G. Kastlunger, M. Krack, G. Kresse, T. D. Kühne, K. Lejaeghere, G. K. H. Madsen, M. Marsman, N. Marzari, G. Michalicek, H. Mirhosseini, T. M. A. Müller, G. Petretto, C. J. Pickard, S. Poncé, G.-M. Rignanese, O. Rubel, T. Ruh, M. Sluydts, D. E. P. Vanpoucke, S. Vijay, M. Wolloch, D. Wortmann, A. V. Yakutovich, J. Yu, A. Zadoks, B. Zhu, and G. Pizzi, How to verify the precision of density-functional-theory implementations via reproducible and universal workflows, Nat. Rev. Phys. 6, 45–58 (2024)